Multi-source Transfer Learning Based on the Power Set Framework

نویسندگان

چکیده

Abstract Transfer learning is a great technology that can leverage knowledge from label-rich domains to address problems in similar lack labeled data. Most previous works focus on single-source transfer, assuming the source domain contains sufficient data and close target domain. However, practical applications, this assumption hardly met, exist different domains. To improve adaptability of transfer models for multi-source scenarios, many existing methods utilize commonality specificity across They either map all with into common feature space or combine multiple classifiers trained pairs each form classifier. correlations bring significant impacts performance are ignored. In light this, we propose novel method based power set framework (PSF-MSTL). First, PSF-MSTL constructs enables be interrelated. Second, makes source-domain integral able provide complementary using dual-promotion strategy. Additionally, formulated as an optimization problem, iterative algorithm presented it. Finally, conduct extensive experiments show outperform advanced methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Online Q-learning Based Multi-Agent LFC for a Multi-Area Multi-Source Power System Including Distributed Energy Resources

This paper presents an online two-stage Q-learning based multi-agent (MA) controller for load frequency control (LFC) in an interconnected multi-area multi-source power system integrated with distributed energy resources (DERs). The proposed control strategy consists of two stages. The first stage is employed a PID controller which its parameters are designed using sine cosine optimization (SCO...

متن کامل

A Representation Learning Framework for Multi-Source Transfer Parsing

Cross-lingual model transfer has been a promising approach for inducing dependency parsers for lowresource languages where annotated treebanks are not available. The major obstacles for the model transfer approach are two-fold: 1. Lexical features are not directly transferable across languages; 2. Target languagespecific syntactic structures are difficult to be recovered. To address these two c...

متن کامل

Multi-Similarity Based Multi-Source Transfer Learning and Its Applications

—In this paper, a novel multi-source transfer learning method based on multi-similarity ((MS)TL) is proposed. First, we measure the similarities between domains at two levels, i.e., “domain-domain” and “sample-domain”. With the multisimilarities, (MS)TL can explore more accurate relationship between the source domains and the target domain. Then, the knowledge of the source domains is transfer...

متن کامل

the effect of lexically based language teaching (lblt) on vocabulary learning among iranian pre-university students

هدف پژوهش حاضر بررسی تاثیر روش تدریس واژگانی (واژه-محور) بر یادگیری لغات در بین دانش آموزان دوره پیش دانشگاهی است. بدین منظور دو گروه از دانش آموزان دوره پیش دانشگاهی (شصت نفر) که در سال تحصیلی 1389 در شهرستان نور آباد استان لرستان مشغول به تحصیل بودند انتخاب شده و به صورت قراردادی گروه آزمایش و گواه در نظر گرفته شدند. در ابتدا به منظور اطمینان یافتن از میزان همگن بودن دو گروه از دانش واژگان، آ...

15 صفحه اول

application of upfc based on svpwm for power quality improvement

در سالهای اخیر،اختلالات کیفیت توان مهمترین موضوع می باشد که محققان زیادی را برای پیدا کردن راه حلی برای حل آن علاقه مند ساخته است.امروزه کیفیت توان در سیستم قدرت برای مراکز صنعتی،تجاری وکاربردهای بیمارستانی مسئله مهمی می باشد.مشکل ولتاژمثل شرایط افت ولتاژواضافه جریان ناشی از اتصال کوتاه مدار یا وقوع خطا در سیستم بیشتر مورد توجه می باشد. برای مطالعه افت ولتاژ واضافه جریان،محققان زیادی کار کرده ...

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Computational Intelligence Systems

سال: 2023

ISSN: ['1875-6883', '1875-6891']

DOI: https://doi.org/10.1007/s44196-023-00281-y